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Abstract—The advent of microservice architecture has led
to a significant shift in the development of service-oriented
software. In particular, the use of Remote Procedure Call (RPC),
a mode of Inter-Process Communication (IPC) prevalent in
microservices, has noticeably increased. To figure out the rela-
tionships between services and obtain a high-level understanding
of service-oriented software, a line of recent work focuses on
the dynamic construction of service call graphs, which relies on
the preliminary deployment of services and only captures the
calling relationships within a specific time frame. Meanwhile,
static methods avoid the need for pre-deployment and often
provide a more stable and complete graph compared to dynamic
techniques. However, research and practical applications of static
call graph construction remain relatively unexplored.

This paper introduces RPCover, a novel gRPC dependency
recovery framework that facilitates the interconnection of ser-
vices across various programming languages using their static
gRPC calls. In addition, due to the lack of a multilingual
microservice benchmark that uses gRPC, we build the first
multilingual benchmark RPCoverBench that contains complex
gRPC call relations. RPCover has been evaluated on a single
language benchmark (DeathStarBench) and our multilingual
benchmark (RPCoverBench). The results show that RPCover
effectively recovers 99.33% of the use cases of gRPC calls with
less than 200% of the overhead compared with a single-language
semantic dependency analyzer.

Index Terms—gRPC, dependency recovery, microservice

I. INTRODUCTION

Microservice architecture [1], [2] has become increasingly

popular in software development due to its ability to improve

agility, scalability, and reliability. However, with the growing

usage of microservice, several challenges arise. As the level

of microservice system complexity increases, there is a risk

of accumulating technical debt [3]. One notable debt is the

proliferation of point-to-point connections among services,

which can lead to significant costs in terms of system evolution

and maintenance [3]. To mitigate such technical debt, many re-

searchers have attempted to perform service-level dependency

analysis to reconstruct the architecture of the services.

Prior research in the field of service-level dependency anal-

ysis can be broadly classified into two main methodologies:

dynamic analysis [4]–[13] and static analysis [14]–[20]. Dy-

namic analysis is a technique that executes the system across

a range of inputs. Instead of extracting system data from the

source code, the analysis is conducted by evaluating generated
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logs or collected run-time metrics. This approach provides

real-time insights into system behaviors under different con-

ditions. On the other hand, static analysis is a method that

leverages the code base to reconstruct the system architecture.

This is achieved by utilizing the system information embedded

within the source code and other associated artifacts, offering a

comprehensive understanding of the inherent system structure

and potential dependencies. Despite the capabilities of both

dynamic and static methods in analyzing services and their

dependencies, current works have their own limitations.

Dynamic analysis, which tracks service dependency rela-

tionships using real-time metrics such as logs and traces, can

yield results that vary significantly when metrics are collected

at different times. A study by Luo et al. [11] reveals that a

single online service can have up to nine distinct classes of

topologically different graphs, which may influence analyz-

ing runtime performance significantly. Additionally, dynamic

analysis requires a well-established infrastructure, including

available relevant logs and traces, for effective conduct. How-

ever, not all systems have this kind of infrastructure in place.

Static analysis can offer a partial solution to the limitations

of dynamic analysis in terms of producing consistent results

for the same code repository. However, it inherently lacks

completeness because it sacrifices the language-independent

characteristics of dynamic analysis [14], [15], [18]. This

limitation poses challenges to its applicability in multilingual

services, rendering it incomplete in this context, as there is no

trace indicating the calling chain. While certain efforts have

been made to unify static analysis across different program-

ming languages [17], these methods typically require extra

efforts to accommodate various programming languages.

In a microservice architecture, gRPC is a commonly used

communication mechanism among services. However, existing

studies do not adequately illustrate the complete gRPC calling

relations among microservices. gRPC requests are described

in an intermediate representation (IR) and then compiled into

interfaces in multiple languages. It is challenging to extract

call graphs among microservices by utilizing conventional

single-language semantic analysis, as it cannot trace the call

relation to another microservice. Schiewe et al. [17] proposed

the use of LAAST (Language-Agnostic Abstract Syntax Tree)

to potentially alleviate this issue. However, the extension of

LAAST to other programming languages presents a challenge

because the abstractions differ between languages.

1930

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00108

20
23

 3
8t

h 
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
ut

om
at

ed
 S

of
tw

ar
e 

En
gi

ne
er

in
g 

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

10
8

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 11,2024 at 13:03:03 UTC from IEEE Xplore.  Restrictions apply. 



To tackle these challenges, this paper introduces RPCover

as the first framework to automatically identify the depen-

dencies between gRPC (a widely used implementation of

RPC) in multilingual microservices. Our approach begins

with an intra-service analysis, where a single-language se-

mantic dependency analyzer is applied to each microservice

to extract dependencies within the service. Subsequently, an

inter-service analysis is performed using gRPC definitions.

This analysis, which involves matching all possible call and

implementation sites of gRPC services and requests in the

dependency indexes, allows us to establish the gRPC call

relations among microservices. Finally, RPCover integrates

the inter-service dependency graph into a unified index file,

ensuring compatibility with various editors and graph viewers.

This enables easy integration and analysis of the output graph

and its further visualization.

In addition, we build a microservice benchmark incorporat-

ing multiple remote procedure calls (RPC) invocations among

these services, written in five distinct programming languages.

This benchmark enables us to effectively evaluate the per-

formance and adaptability of our framework. Results indicate

that RPCover achieves 99.33% accuracy in the benchmarks,

with an overhead less than 200% compared to LSIF language

semantic dependency analyzers.

In summary, this paper makes the following contributions:

• Approach. We propose RPCover, a gRPC dependency

recovery technique based on the SCIP index, which

provides easy adoption to different projects and program-

ming languages.

• Benchmark. We construct a microservice benchmark

consisting of fifteen services across five widely-used

backend programming languages, which simulates poten-

tial design flaws in production environments and allows

performance assessment of software architecture recon-

struction.

• Open source. Our tool [21] and benchmark [22] have

been publicly released.

II. BACKGROUND

This section provides an overview of the fundamental con-

cepts employed in this paper, including microservice, Software

Architecture Reconstruction (SAR), Remote Procedure Call

(RPC), dependency terminology, Protocol Buffers, Language

Server Index Format (LSIF), and SCIP Code Intelligence

Protocol (SCIP).

A. Microservices

Microservices, an architectural style inspired by service-

oriented computing, facilitates the design of highly scalable

and maintainable software through orchestrating compact ser-

vices [23]. However, the lack of a definitive standard for deter-

mining architectural quality can lead to unintentional technical

debt [24], [25]. This includes issues such as excessive inter-

service connections, inappropriate incorporation of business

logic within the communication layer, and poor source code

management across different services [3]. To address these

challenges, many researchers are working on reconstructing

the software architecture, which will be introduced in the next

section.

B. Software Architecture Reconstruction

Given the potential for architectural deterioration due to

technical debt [25], proactive software architecture recon-

struction becomes crucial for identifying design issues and

maintaining organized services. Dynamic and static analysis

are the primary methods for this process [26].

1) Dynamic Analysis: Dynamic analysis, independent of

programming language, captures intricate software behavior

and extracts runtime metrics. However, its reliability depends

on tracking the function calling chain within a time frame. A

missing calling chain will result in an incomplete dependency

graph [4]. Common approaches to reconstruct microservice

architecture include log analysis [5], tracing analysis [6]–[11],

and monitoring [12], [13].

2) Static Analysis: Static analysis provides a consistent

view of software architecture, proving beneficial for pre-

emptive use prior to service deployment. It facilitates early

detection of potential issues, thereby ensuring stability and per-

formance. Tools such as Microvision [14] and LAAST employ

Abstract Syntax Tree (AST) for architectural reconstruction.

While Microvision is language-specific, LAAST [17] aims

to unify ASTs across various languages. However, static

analysis sacrifices the language-independence characteristic of

dynamic analysis, as it necessitates a unique frontend for each

programming language to extract relevant information during

the analysis process. This requirement imposes additional

implementation works.

C. Remote Procedure Call

Remote Procedure Call (RPC), a protocol allowing proce-

dures to execute on remote systems as if they were local,

simplifies networking and distributed application development

[27]–[29]. gRPC, a high-performance and open-source imple-

mentation of RPC, has shaped current RPC standards and

efficiently connects services across data centers. Extensive

research has been conducted to optimize the RPC process,

such as speeding up the RPC process [30], identifying the

critical paths of microservices [31], and analyzing the overall

structure of microservices [10].

D. Dependency

We classify dependencies into two types: service-level de-
pendency and function-level dependency. Service-level depen-

dencies exist when one microservice relies on another, often

through gRPC calls. Function-level dependencies occur when

one function depends on another. If two dependent functions

reside in separate services, both service-level and function-

level dependencies are present. If they are in the same service,

only a function-level dependency exists. For instance, an RPC

call represents a service-level dependency, while a regular

function call indicates a function-level dependency.
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E. Protocol Buffers

Protocol Buffers [32] (Protobuf) is a binary serialization

format developed by Google for efficient communication be-

tween systems. It uses a schema to define the structure of

data and encodes it into a compact binary format, resulting

in smaller message sizes. Protobuf finds applications [33] in

network communication [34], data storage, and inter-process

communication, offering flexibility and compatibility across

multiple programming languages.

Protocol Buffers are widely used as an intermediate rep-

resentation (IR) for describing inter-language structures. For

example, gRPC defines its service and request objects in

Protocol Buffers and then utilizes Protocol Buffer compiler

plugins to translate these definitions into interfaces in multiple

languages.

F. Representations of Code Dependencies(LSIF and SCIP)

The Language Server Index Format [35] (LSIF) and SCIP

Code Intelligence Protocol (SCIP) [36] are popular language-

independent representations of code dependencies. They use a

general structure to encode the semantic relationship for code

navigation, including definition, reference, and implementation

relationships. LSIF encompasses relations between seman-

tic symbols using edge labels like textDocument/definition,

textDocument/references, and textDocument/implementation.

Fig. 1 provides an example of textDocument/definition. The

LSIF indexer will translate the input source code into a graph

that delineates nodes and edges. Each node represents an

identifier, while each edge signifies a relationship between

nodes.

Unlike LSIF, SCIP, which is developed by Sourcegraph

[37], encodes rich semantic dependency information directly

in nodes, thereby eliminating the need for constructing a

complex graph. For example, the definition relationship in

SCIP is preserved as an attribute of the reference site, rather

than a labeled edge connecting the definition node and the

reference site. By forgoing graph representation and instead

employing Protobuf encoding of symbols and relationships,

Sourcegraph asserts that SCIP indexes are, on average, four

times smaller when compressed with gzip, compared to their

LSIF counterparts. Furthermore, uncompressed LSIF payloads

are about five times larger in size [38]. SCIP also maintains

compatibility with LSIF by a converter that is capable of

generating an LSIF index from SCIP input.

III. APPROACH

Our research method, shown in Fig. 2, analyzes a collection

of microservices across different languages with complex

gRPC dependencies. The process begins with an Intra-Service
Analysis, where SCIP is used to create index files that outline

dependencies in each microservice. Subsequently, RPCover

carries out an Inter-Service Analysis to identify gRPC de-

pendencies between microservices, with the gRPC Matcher
consolidating these into a unified index file. This unified SCIP

index is then transformed into an LSIF index for further

analysis. Finally, we employ a graph database to visualize the

Fig. 1. Example of textDocument/definition in LSIF [39]. The
reference site of the function bar() in foo() is represented as a node
labeled bar [ref] in the LSIF index. It processes a [result set]
node which maintains an textDocument/implementation edge to its
definition node labeled bar [def].

Fig. 2. Workflow of RPCover

uncovered dependencies, offering an intuitive understanding

of the interrelationships between services.

A. Intra-Service Analysis

Within each microservice, gRPC Protocol Buffer compiler

plugins transform the gRPC service and request definitions

into stubs, as illustrated in Fig. 3 and Fig. 4. To outline

dependencies across different microservices, our first step is

to identify the invocation of a generated gRPC stub within

a particular microservice. To accomplish this, we index each

microservice to map out the corresponding call relationships.

There are two popular formats for semantic analysis. The

LSIF, which heavily relies on edges to expose relationships,

can add complexity and hamper performance when used for

direct analysis. Given this, the SCIP is more apt for such

analysis tasks for the following reasons:

• It holds extensive information, such as source location

and reference relationships, in each symbol object, which

signifies a declaration of a variable, function, or

type in the source code.

1932

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 11,2024 at 13:03:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Connection of Single Language Repository, Conn(client, generated-
Code, reference) and Conn(server, generatedCode, implementation)

• It applies URI-based symbol name encoding for quick

and accurate queries across different source files or even

different projects.

Due to these benefits, we choose the SCIP and its corre-

sponding indexers as the Intermediate Representation (IR) for

the analysis process.

As depicted in Step 1 of Fig. 2, RPCover utilizes the

appropriate SCIP indexer to analyze each microservice [36],

establishing function-level dependencies within the service. To

enhance clarity and comprehension of these indexes, we use

the following formula to illustrate the structure of a single

entry stored in the index.

Conn(node1, node2, relationship)

The variables Conn, node1, and node2 represent a con-

nection and two different code stubs, respectively. The vari-

able relationship denotes the relationship between node1
and node2. For example, as shown in Fig. 3, Conn(client,
generatedCode, reference) and Conn(server, generatedCode,
implementation) represent relationships in Python using the

provided client and server stubs. The file generated by the

Protocol Buffer compiler includes both the server stub (which

requires further developer implementation) and the client

stub (which facilitates service invocation by the developer).

The server is implemented in greet_server.py, while

the corresponding service is invoked via the client stub in

greet_client.py. After the indexing phase, we get two

distinct relationships: the implementation relationship between

server stub and its definition site, and the reference relationship

between client stub and its call site. Through these connections

between the generated code and its call or implementation

sites from the SCIP index file, we can identify whether a

microservice implements or calls a certain gRPC service,

forming a foundation for analyzing dependencies between

microservices.

B. Inter-Service Analysis

After the intra-service analysis, we obtain the gRPC server

implementations and request calls in each microservice. How-

Fig. 4. Relationships between Protobuf Definition File and Language Bind-
ings

ever, the call relationships across microservices remain un-

clear. The gRPC request calls are still not associated with

their implementations from one microservice to another. To

fully uncover the gRPC dependencies, we incorporate an inter-

service analysis. This step aims to extract cross-service call

relationships, thereby connecting the separate call graphs of

microservices together via these gRPC call relationships.

For instance, as illustrated in Fig. 4, the Go binding func-

tions might be used on the client side, and the C++ binding

functions on the server side. This setup allows the Go client to

invoke the C++ server. By applying the notation described ear-

lier, we can express the relationship between the Go client and

the C++ server. Our method would then establish the connec-

tion Conn(generatedCodego, generatedCodec++, relationship).
For instance, as illustrated in Fig. 4, a microservice written

in Go may call another microservice written in C++ via

the generated Go bindings and client stubs. By the intra-

service analysis, we have already established the following

relationship within each microservice:

Conn(userCallSitego, clientStubgo, reference) (1)

Conn(userImplSitec++, serverStubc++, reference) (2)

Inter-service analysis would establish the connection

Conn(clientStubgo, serverStubc++, reference)

to associate the connection (1) with (2) and then form a

complete dependency path from the Go microservice to the

C++ microservice.

To construct the connection, it is necessary to characterize

the stubs and the gRPC definitions, thereby constructing

a relationship between them. We define an index type
object to represent stubs in different languages. This object

encapsulates the names of a declared type and its methods,

along with code reference information. These index type
instances are created in the gRPC Matcher when reading SCIP

index files from SCIP indexers, as depicted in Step 2 of Fig.

2. Upon gathering the index type objects for all possible

definitions in the source code of microservices, we use a

matcher to identify possible associations between any pair

of stubs and gRPC definition. Once two stubs from different

microservices are associated with the same gRPC service

definition, we can then conclude the connection between the

two stubs as the example shown above. Algorithm 1 illustrates

the process of building these associations, while Algorithm

2 shows an example of a fuzzy matcher. After establishing
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Algorithm 1: Dependency recovery between Protobuf

and SCIP index
Data: gRPC service Protobuf definition sproto, index type

tindex, and a matcher mt
Result: Updated index class t′index, or MISMATCH

1 if mt.MatchService(sproto, tindex) then
2 M ← A map that maps the method to its matched gRPC

request definition
3 for rproto in sproto.Requests do
4 mindex ← mt.FindAndMatchMethod(rproto, tindex)
5 if mindex is nil then
6 return MISMATCH
7 end
8 M [mscip]← rproto
9 end

10 t′ ← tindex.AddRelation(sproto)
11 for mindex, rproto in M do
12 mindex.AddRelation(rproto)
13 t′index ← t′index.UpdateMethod(mindex)
14 end
15 return t′index

16 else
17 return MISMATCH
18 end

the connection, the gRPC Matcher unifies the SCIP index

files from multiple microservices into one and embeds the

newly constructed connections into the unified SCIP index.

Nevertheless, the name normalization strategy might result in

occasional false positives. For instance, RPCover will establish

dependencies irrespective of the specific conditions required in

actual client-server interactions. To address this limitation, a

uniform interface is also provided for users to implement their

own matchers. By defining customized matching algorithms,

one can possibly reduce false positives from the default fuzzy

matcher in a certain usage scenario.

The index type abstraction allows us to overlook

language-specific details during dependency recovery. By

identifying associations between gRPC stubs and definitions,

and combining this with the results of intra-service dependen-

cies from the previous step, RPCover forms the directional

dependency from reference to implementation across microser-

vices, thus revealing inter-microservice dependencies in the

entire system. Furthermore, high-level features derived from

the Protocol Buffer Compiler toolchains can be seamlessly

integrated with RPCover. This includes functionalities such as

the publisher-subscriber patterns, primarily because RPCover

establishes relatively low-level connections between the Pro-

tobuf Definitions and client, and server stubs.

C. Index Conversion and Visualization

After following the steps mentioned above to establish all

the relationships, we obtain a unified SCIP index file with the

gRPC dependency information across microservices encoded.

During this particular stage, the LSIF converter will convert

the SCIP file into an LSIF file. The LSIF converter will discard

redundant information to alleviate the burden on disk storage.

This is necessary as the file consolidates all the preceding

Algorithm 2: Example fuzzy matcher

Data: gRPC service Protobuf definition sproto, gRPC
request Protobuf definition rproto, and index type
from SCIP tscip

Result: True or False of whether the names in index
follows the naming convention

1 def convertName (n):
2 p← Remove non-alphanumeric characters and convert

string n to lowercase
3 return p
4 def FindAndMatchMethod (rproto, tscip):
5 for mscip in tscip.Methods do
6 nr ← convertName(rproto.Name)
7 nm ← convertName(mscip.Name)
8 if nr == nm then
9 return mscip

10 end
11 end
12 return nil
13 def MatchService (sproto, tscip):
14 ns ← convertName(sproto.Name)
15 nt ← convertName(tscip.Name)
16 if nt.HasSubString(ns) then
17 return true
18 end
19 return false

projects, and without this optimization, its size would become

excessively large.

We utilize Memgraph to enhance the comprehension of de-

pendencies. This platform visually illustrates the connections

among various microservices. As shown in Fig. 5, it presents

all the gRPC dependencies among the source files. In our

benchmark, we set up 15 services each implementing a unique

gRPC service, resulting in 15 distinct dependency clusters.

Taking the Go_A.proto cluster as an example, its gRPC

server establishes links with definitions and references dis-

tributed in 19 source files. These include one source file con-

taining the implementation of Go_A service (server.go)

and 18 generated source files from Go_A.proto, as illus-

trated in Table I.

IV. BENCHMARK

In this section, we introduce the limitations of the current

benchmarks and show how we design and implement our

benchmark.

Existing Benchmark: For our research, we investigated

well-established microservice testbeds developed by external

researchers, namely DeathStarBench [40] and TrainTicket

[41]. DeathStarBench includes five end-to-end services, four

for cloud systems, and one for cloud-edge systems running on

drone swarms. TrainTicket consists of 41 Java-based microser-

vices. These testbeds were chosen due to their widespread

usage and their ability to represent diverse systems utilizing

various components. The design methodologies employed by

these testbeds offered valuable insights for related studies.

As the existing benchmark testbeds, DeathStarBench [40]

and TrainTicket [41], primarily focus on one or two pro-
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TABLE I
SEARCH RESULT OF GO_A’S RELATIONSHIPS

Index File Name Index File Name
1 Go A/cmd/server.go 11 Go A/proto/Go A grpc.pb.go
2 Cpp A/protos/Go A.grpc.pb.h 12 Go B/proto/Go A grpc.pb.go
3 Cpp A/protos/Go A.grpc.pb.cc 13 Go C/proto/Go A grpc.pb.go
4 Cpp B/protos/Go A.grpc.pb.h 14 Java A/src/main/benchmark/Go AGrpc.java
5 Cpp B/protos/Go A.grpc.pb.cc 15 Java B/src/main/benchmark/Go AGrpc.java
6 Cpp C/protos/Go A.grpc.pb.h 16 Java C/src/main/benchmark/Go AGrpc.java
7 Cpp C/protos/Go A.grpc.pb.cc 17 Python A/protos/Go A pb2 grpc.py
8 Ts A/protos/Go A.ts 18 Python B/protos/Go A pb2 grpc.py
9 Ts B/protos/Go A.ts 19 Python C/protos/Go A pb2 grpc.py

10 Ts C/protos/Go A.ts

Fig. 5. Overview of benchmark visualization. Each cluster represents a gRPC
Protocol Buffer definition and its related source files which have a reference
between them.

gramming languages. Additionally, only DeathStarBench in-

corporates gRPC in its services. Hence, we have identified

the necessity of developing our own benchmark to thoroughly

evaluate our performance.

RPCoverBench: We want to benchmark RPCover in the

following scenarios:

• Direct gRPC dependencies among microservices written

in the same programming language

• Direct gRPC dependencies among microservices written

in different programming languages

• Long dependency chains involving multiple microser-

vices.

Moreover, we have considered the typical behavior of a

service. Specifically, a service often functions as either a single

client, a single server, or both.

In light of these requirements, we built a benchmark con-

sisting of fifteen services across five programming languages

to evaluate our approach in establishing interdependent multi-

lingual services using gRPC. We selected the five most widely

used backend programming languages (i.e., C++, Java, Python,

Go, TypeScript) for the implementation of microservices.

Additionally, we implemented three microservices for each

language, as this is the minimum number necessary to create

potential indirect dependencies within the microservices of the

same language, with each service potentially acting as a client,

server, or both.

This benchmark, which includes both typical and excep-

tional scenarios, enabled us to assess the efficiency and

effectiveness of our approach. To be more intuitive, Fig.

6 represents the layout of our simplified benchmark, with

each dashed square denoting a specific language’s service

implementation. Each square comprises two or three types of

circles, with each circle representing an individual service.

• The green circle symbolizes the pure gRPC client, which

solely invokes gRPC servers of other services.

• The red circle represents the pure gRPC server, which

exclusively functions as a gRPC server, awaiting client

requests.

• The yellow circle encompasses both scenarios, as it serves

as both a client and a server simultaneously.

Each programming language provides three services, each

of which comprises three functions. Each function calls several

other functions, which can either belong to the same service or

originate from external services. This is denoted in the Depen-
dent Services Function ID column. The function IDs follow

the format [language]-[service name]-[function number]. For

instance, in Python service A, function Python-A-1 would

call Python-A-2, Python-B-1, and Python-C-1. For

detailed information about the services, please refer to the

benchmark repository [22].

V. EVALUATION

In this section we aim to answer the following research

questions:

• RQ1: What is the coverage of the RPCover in finding

the gRPC dependency?

• RQ2: How effective does the RPCover compared with

the existing LSIF-based semantic dependency analyzers

in terms of the execution time?
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Fig. 6. Simplified Benchmark Layout

We ran the RPCover to analyze RPCoverbenchmark and the

hotelReservation test from the DeathStarBench on a machine

with 13th Gen Intel Core i5-13400; 126GB RAM; 1T SSD,

running Ubuntu 22.04.

A. Result Analysis: coverage

In evaluating our approach, we consider both precision and

recall. We manually count the gRPC calls in DeathStarBench

[40] and our proposed benchmark RPCoverBench. As outlined

in Table II, DeathStarBench comprises 7 gRPC calls, while

RPCoverBench includes 142 gRPC calls. Using our method,

RPCover identifies 7 function-level dependencies in Death-

StarBench. Of these, 7 are correct, yielding a precision of

100%. This gives a recall of 100%. In the RPCoverBench

evaluation, RPCover correctly identifies 142 function-level

dependencies out of a total of 142 with 1 false-positive,

resulting in a precision of 99.30%. The recall in this case

is 100%.

In examining the misrecognized gRPC calls, we found that

false positives arise when a struct shares the same name and

function name as a service definition in a Protocol Buffer

file. This leads RPCover to erroneously identify the struct as

an implemented service, even though it is not. This case is

unusual because the likelihood of writing a struct, which shares

the same name and method names but has no relationship with

the Protocol Buffer definition, is quite low.

To demonstrate our visualization results, we select the Hotel
Reservation service from the DeathStarBench as an example.

The outcome of the Software Architecture Reconstruction

(SAR) is depicted in Fig. 7. The Hotel Reservation mi-

croservice cluster consists of seven sub-services: user, profile,

recommendation, reservation, search, rate, geo, and frontend.

Utilizing visualization platforms such as Memgraph or Neo4j,

we can uncover the relationships between services within the

cluster. For instance, the search service interacts with both

the rate and geo services, whereas the frontend service makes

calls to its related services.

Fig. 7. SAR of DeathStarBench’s hotel reservation services cluster

B. Result Analysis: effectiveness

To answer RQ2, we evaluate the time and memory ex-

penditure of RPCover across two benchmarks, taking into

consideration both the programming language and the number

of code lines.

Taking the single-language LSIF indexing with open-source

indexers as the baseline, we conducted 20 runs of RPCover

on each benchmark (i.e., DeathStarBench and RPCoverBench)

and calculated the average cost. As presented in Table III and

IV, the time overhead introduced by RPCover was found to

be below 150%. The performance is primarily determined by

the base SCIP indexer that is utilized, as the gRPC matching

cost only accounts for 3-5% of the indexing task. Specifically,

RPCover brings overhead only in C++ projects. The main

reason for this large overhead is that C++ SCIP indexer does

more work than the LSIF indexer. The C++ SCIP indexer

analyses the source code in a more precise way with each

translation unit considered, whereas the C++ LSIF indexer

omits some of the external header files. In other languages, we

even gain a performance boost using RPCover. The memory

overhead brought by RPCover is less than 100%. Note that

the baseline time cost and memory usage for the Java project

is not applicable since we could not find a usable Java

LSIF indexer. Currently, there are only two LSIF indexers for

Java: lsif-java [42] developed by Sourcegraph has been

deprecated, and lsif-java [43] developed by Microsoft can

only run on Windows.

In addition, to further illustrate the performance impact

brought by RPCover, we selected large-scale projects that

employ gRPC and applied RPCover to them. Due to the lack of

large open-source projects with microservice dependencies, we

selected grpc and grpc-go with extensive Protocol Buffer

dependencies (i.e., for example, grpc has 277 Protocol Buffer

definition files), which require RPCover to match and construct

dependencies between numerous symbols. The results show

that the overhead brought by RPCover is also acceptable. The

time overhead was approximately 175% for grpc and 22%
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TABLE II
RQ1: RESULT

Benchmark Cluster True Positive True Negative False Positive False Negative Precision Recall

DeathStarBench 7 0 0 0 100% 100%
RPCoverBench 142 0 1 0 99.30% 100%

Overall 149 0 1 0 99.33% 100%

TABLE III
RQ2: TIME COST OVERHEAD

Repository Language Service Lines of Code Baseline Time(s) Eval Time(s) Overhead

DeathStarBench Go hotelReservation 4,503 4.53 3.46 -23.62%

RPCoverBench

Typescript
A 2492 3.3 1.98 -40.0%
B 2486 3.26 2.003 -38.56%
C 2475 3.86 2.009 -47.97%

Python
A 1942 5.21 3.683 -29.32%
B 1915 3.83 3.649 -4.73%
C 1912 3.77 3.623 -3.9%

Go
A 3795 5.56 3.484 -37.33%
B 3786 5.01 3.425 -31.64%
C 3656 4.14 3.416 -17.48%

Java
A 8296 - 26.332 -
B 8330 - 26.098 -
C 8373 - 25.819 -

Cpp
A 13953 23.55 47.684 102.48%
B 13930 23.2 47.496 104.72%
C 13922 23.5 47.382 101.62%

grpc C++ - 934,936 1110.53 3062.09 175.73%

grpc-go Go - 85,890 15.39 11.90 22.68%

for grpc-go. Moreover, RPCover reduced memory usage to

about 30% and 97% of the baseline on grpc and grpc-go,

respectively.

VI. THREATS TO VALIDITY

A. Internal Validity

For internal validity, a suitable benchmark for our work does

not currently exist. In particular, we need a multilingual bench-

mark where all services utilize gRPC. Consequently, we have

to design and implement a multilingual benchmark evaluation

framework that incorporates complex service call sequences.

While this benchmark may not perfectly reflect real-world

scenarios, as actual large-scale microservice systems could

involve thousands of services with intricate dependencies, it is

designed to emulate a variety of situations for comprehensive

testing.

In our implementation, we can not completely eliminate the

possibility of a false-positive when a user-defined type shares

the same names as the service and method names in a gRPC

definition. This occurrence is rare in practice, as it requires

an exact match for both the type name and method names.

However, even in these rare instances, our tool RPCover

remains robust - it will not miss any gRPC calls that it should

identify. Additionally, we provide an interface enabling users

to define their own matching logic, catering to the needs of

those using their own Protocol Buffer compiler plugins.

B. External Validity

Our approach has been implemented and evaluated for

compatibility with the gRPC framework. However, it carries

the potential for extending to other protocols that also utilize

Protocol Buffers. Furthermore, in theory, our approach can

be generalized to encompass all 11 programming languages

supported by gRPC.

RPCover leverages the existing SCIP indexers to build the

index for a specific repository. As a result, our approach’s

performance and reliability hinges on these external tools. It is

worth noting that the tools employed in RPCover may contain

certain known or unknown bugs. While we have addressed

several bugs in our version, the possibility of yet-undiscovered

issues remains.

VII. RELATED WORK

Multiple approaches aim to perform static analysis to re-

cover code dependencies.

Microvision [14] leverages the Abstract Syntax Tree (AST)

of the code to parse the codebase and identify endpoints.

This enables Microvision to infer the complete structure

of microservices. However, their approach only takes into

account the same programming language. In contrast, our
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TABLE IV
RQ2: MEMORY COST OVERHEAD

Repository Language Service Lines of Code Baseline Peak Memory(MB) Eval Peak Memory(MB) Overhead

DeathStarBench Go hotelReservation 4,503 521.6 546 4.68%

RPCoverBench

C++
A 13,953 1195 181.8 -84.79%
B 13,930 1195 179.0 -85.02%
C 13,922 1208 182.0 -84.93%

Go
A 3,795 484 541.2 11.81%
B 3,786 487 542.95 11.49%
C 3,656 516 545.85 5.78%

Java
A 8,296 - 1010.55 -
B 8,330 - 1018.95 -
C 8,373 - 1016.15 -

Python
A 1,942 124 184.95 49.15%
B 1,915 123 184.65 50.12%
C 1,912 122 185.6 52.13%

TypeScript
A 2,492 224 223.4 0.37%
B 2,486 220 222.95 1.34%
C 2,475 218 224.3 2.89%

grpc C++ - 934,936 2,794 812 -70.93%

grpc-go Go - 85,890 1485 1444 -2.76%

evaluation considers five programming languages, and it is

easy to extend, allowing for a more comprehensive analysis.

LAAST [17] has the objective of converting language-specific

code representations into a Language-Agnostic Abstract Syn-

tax Tree (LAAST) to enable cross-language analysis of service

repositories. However, the implementation of LAAST for mul-

tiple programming languages can be resource-intensive and

expensive, posing a significant challenge in terms of practical

adoption and scalability. In contrast, our approach offers ease

of use and scalability through parallel execution and analysis.
Bushong et al. [18] utilize source code analysis to identify

entities and bounded contexts within services, facilitating a

better understanding of the system’s architecture. However,

their method is specifically designed for the Springboot frame-

work. Granchelli et al. [19] utilize a combination of static and

dynamic analysis, incorporating source code and Dockerfiles,

to reconstruct the architecture of a system. On a similar note,

Ibrahim et al. [20] leverage Dockerfiles to construct attack

graphs and identify security vulnerabilities in container im-

ages. However, in our approach, we specifically concentrate on

analyzing the calling dependencies within the code repository.

VIII. CONCLUSION

In this paper, we introduce RPCover, a novel approach

for static service dependency recovery based on source code

analysis. By leveraging the concept of analysis on top of a

cross-language code indexing representation, RPCover enables

the construction of a multi-lingual (including Protocol Buffer

and other programming languages) and efficient dependency

recovery tool for gRPC. This approach can easily be integrated

into existing tools for further analysis, depending on the

actual demand. We have also proposed a benchmark that

includes five programming languages, with each language

encompassing three services, which can be utilized to test

RPCover’s efficiency.

In our evaluation, we used our own proposed benchmark

along with another benchmark, DeathStarBench. RPCover

achieves an accuracy of 99.33% in identifying service rela-

tionships, while maintaining an overhead of less than 200%

of the existing LSIF indexers across all benchmarks.
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